Numerical solution of General Rosenau-RLW Equation using Quintic B-splines Collocation Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of General Rosenau-RLW Equation using Quintic B-splines Collocation Method

In this paper a numerical method is proposed to approximate the solution of the nonlinear general Rosenau-RLW Equation. The method is based on collocation of quintic B-splines over finite elements so that we have continuity of the dependent variable and its first four derivatives throughout the solution range. We apply quintic B-splines for spatial variable and derivatives which produce a syste...

متن کامل

numerical solution of the rosenau equation using quintic collocation b-spline method

in this paper , the quintic b-spline collocation scheme is employed to approximate numerical solution of the kdv-like rosenau equation . this scheme is based on the crank-nicolson formulation for time integration and quintic b-spline functions for space integration . the unconditional stability of the present method is proved using von- neumann approach . since we do not know the exact solution...

متن کامل

Galerkin method for the numerical solution of the RLW equation using quadratic B-splines

The regularized long wave equation (RLW) is solved numerically by using the quintic B-spline Galerkin finite element method. The same method is applied to the time-split RLW equation. Comparison is made with both analytical solutions and some previous results. Propagation of solitary waves, interaction of two solitons are studied. © 2005 Elsevier B.V. All rights reserved. MSC: 65N30; 65D07; 76B25

متن کامل

Application of Quintic B-splines Collocation Method on Some Rosenau Type Nonlinear Higher Order Evolution Equations

In this work, we discuss a collocation method for solving some Rosenau type non-linear higher order evolution equations with Dirichlet’s boundary conditions. The approach used, is based on collocation of a quintic B-splines over finite elements so that we have continuity of the dependent variable and its first four derivatives throughout the solution range. We apply quintic. B-splines for spati...

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Numerical Analysis

سال: 2012

ISSN: 2193-4215

DOI: 10.5899/2012/cna-00129